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Much attention has been focused on the chemistry of
silaaromatic compounds,i.e., Si-containing [4n + 2]π ring
systems, and a number of reports on the formation and reactions
of transient silaaromatics such as sila- and disilabenzenes have
appeared in the past few decades.1 Although some of them
were characterized spectroscopically in low-temperature ma-
trices,2 no isolation has been reported due to their high reactivity.
The exceptions, silole anions and dianions, reportedly have
significantly delocalized electron density in their silole rings.3,4

As for a neutral silaaromatic compound, Ma¨rkl et al. have
already reported the synthesis of a monomeric silabenzene, 2,6-
bis(trimethylsilyl)-1,4-di-tert-butylsilabenzene.5 However, it
was observed only in solution (THF/Et2O/petroleum ether, 4:1:
1) below-100°C, due apparently to stabilization by coordina-
tion of the solvent Lewis base judging by the relatively high
field 29Si NMR chemical shift (δSi ) 26.8) (Vide infra). The
only generation of a silanaphthalene ever reported, transient
2-methyl-2-silanaphthalene, was deduced by MeOD trapping
of the reaction products in the flow pyrolysis of 2-allyl-2-methyl-
1,2-dihydro-2-silanaphthalene.6 We have recently synthesized
the first stable silanethione, Tbt(Tip)SidS (Tip ) 2,4,6-
triisopropylphenyl),7 by taking advantage of a new and effective

bulky protecting group, 2,4,6-tris[bis(trimethylsilyl)methyl]-
phenyl (denoted as Tbt).8 Our successful application of the Tbt
group to the kinetic stabilization of silaaromatic species has now
led to the first isolation of 2-silanaphthalene1. The 2-silanaph-
thalene1 was synthesized as a colorless, stable crystalline
compound (mp 151-155 °C) in 80% yield by treatment of2
with t-BuLi in hexane (Scheme 1).9

The structure of1 was confirmed by its1H, 13C, and29Si
NMR spectral data,10 which were in quite good agreement with
chemical shifts computed for the parent and substituted 2-si-
lanaphthalenes3-5 (GIAO-B3LYP),11 e.g.,δH for H(1) [1, 7.40;
3, 7.74; 4, 6.97; 5, 7.32], H(3) [1, 7.24; 3, 7.27; 4, 7.03; 5,
7.08], and H(4) [1, 8.48;3, 8.64;4, 8.50;5; 8.55],δC for C(1)
[1, 116.01;3, 128.45;4, 120.43;5, 121.63], C(3) [1, 122.56;3,
125.13;4, 122.68;5, 123.56], and C(4) [1, 148.95;3, 153.38;
4, 153.26;5, 152.45], andδSi for Si(2) [1, 87.35;3, 67.80;4,
100.97;5, 94.32]. The29Si NMR chemical shift (δSi ) 87.35)
observed for the ring silicon of1 is comparable to those for the
previously reported sp2 silicon compounds.1c All the 1H NMR
signals of the ring protons (6.99-8.48 ppm) of1were observed
in the aromatic region, and the13C NMR signals of the ring
carbons (116.01-148.95 ppm) were located in the sp2 region.
The coupling constants between the ring Si atom and the two
adjacent ring carbons [92 Hz forJSisC(1) and 76 Hz forJSisC(3)]
both exceed normal values for CsSi(sp3) (∼50 Hz)12 and are
similar to those reported for SidC systems (83-85 Hz).1c These
results clearly indicate that the 2-silanaphthalene ring has
delocalized double bonds.
The molecular structure of1 was also established by X-ray

crystallography (Figure 1).13 The silanaphthalene ring of1 is
almost planar and oriented perpendicular to the benzene ring
of the Tbt group, suggesting essentially no conjugative interac-
tion of the π-electrons of the Tbt group with those of the
silanaphthalene ring. The 360° bond angle sum shows the
completely planar trigonal geometry around the silicon atom.
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Although we are not able to discuss the X-ray distances
because of the severely disordered 2-silanaphthalene ring of1,14
the SiC bond lengths computed at the uniform B3LYP/6-
311+G** level for the parent 2-silanaphthalene (3) [1.747 Å
for C(1)sSi(2) and 1.790 Å for Si(2)sC(3)] compared with
silabenzene (1.771 Å), H2CdSiH2 (1.708 Å), and H3CsSiH3

(1.885 Å), suggest the delocalization ofπ-electrons in the
2-silanaphthalene ring system of3 (Figure 2). These SiC bond
length relationships are like those for the corresponding CC
bonds in naphthalene, benzene, ethene, and ethane. These
calculations, along with the NMR results just discussed, are
indicative of the aromaticity of3, which is reinforced by the
additional data below.
The Raman spectrum of1 showed a strong line with a maxi-

mum intensity at 1368 cm-1, compared with the most intense
line of 1382 cm-1 for naphthalene. The strongest Raman shifts
observed for1 and naphthalene are in good agreement with the
calculated vibrational frequencies (1377 cm-1 for 3, 1378 cm-1

for 5, and 1389 cm-1 for naphthalene, computed at the B3LYP/
6-31G* level and scaled by 0.98).15 Furthermore, the calculated
vibration modes of5 showed a close resemblance to those of
naphthalene, suggesting the aromatic character of1.
The UV-vis spectrum of1 in hexane showed three absorp-

tion maxima [267 (ε 2 × 104), 327 (7× 103), and 387 (2×

103) nm] most likely assignable to theE1, E2, andB bands.
These are red shifted compared to those for naphthalene [221
(ε 1.33× 105), 286 (9.3× 103), and 312 (289) nm],16 suggesting
the aromatic character of this conjugated ring system.
2-Silanaphthalene1 was found to be very stable thermally

even on heating in benzene at 100°C in a sealed tube in an
inert atmosphere. No dimerization product was detected,
although1 is air- and moisture-sensitive due to its SidCmoiety.
Its thermal stability, obviously due to the steric protecting ability
of the Tbt group, is in sharp contrast to that of 1,4-di-tert-
butylsilabenzene, which cannot be isolated as a monomer and
undergoes facile dimerization even at 0°C.17 Interestingly,1
retains its high reactivity in spite of the thermal stability. Thus,
1 reacts with D2O, methanol, benzophenone, mesitonitrile oxide,
and 2,3-dimethyl-1,3-butadiene to give the corresponding ad-
ducts6-10 across its SidC moiety (59, 72, 62, 77, and 72%
yields, respectively).18

The aromatic character of the 2-silanaphthalene ring system
was evaluated by computing the NICSs (nucleus independent
chemical shifts)19 of 2-silanaphthalene (3) together with the
related silaaromatic compounds and the parent hydrocarbons
(Figure 2). The large negative NICS values obtained for the
possible three silanaphthalenes, comparable to the parent
naphthalene, suggest that the aromatic character will not be
much reduced by the replacement of a ring carbon by a silicon
atom, which agrees with the experimental evidence discussed
above for1.
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Scheme 1a

aConditions: (a) TbtLi, THF,-78 °C, 34%; (b) NBS (3.7 equiv),
BPO (cat.), benzene, reflux; (c) LiAlH4 (10 equiv), THF, 0°C, 29%
(X ) H) and 10% (X) Br) for two steps; (d)t-BuLi (2.0 equiv),
THF,-78 °C; (e) H2O (excess),-78 °C, 94% for two steps; (f) NBS
(1.0 equiv), CCl4, 0 °C, quant; (g)t-BuLi (1.0 equiv), hexane, rt, 80%.

Figure 1. ORTEP drawing of Tbt-substituted 2-silanaphthalene (1)
with a thermal ellipsoid plot (30% probability).

Figure 2. Calculated NICS (ppm) values (in the ring centers) for the
possible silanaphthalenes and related aromatic systems at GIAO-SCF/
6-31+G*. The optimized Si-C bond lengths (Å) are at the B3LYP/
6-311+G** level.
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